The use of timber–concrete composite (TCC) bridges in the United States dates back to approximately 1924 when the first bridge was constructed. Since then a large number of bridges have been built, of which more than 1,400 remain in service. The oldest bridges still in service are now more than 84 years old and predominately consist of two different TCC systems. The first system is a slab-type system that includes a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system is a stringer system that includes either sawn timber or glulam stringers supporting a concrete deck top layer. The records indicate that most of the TCC highway bridges were constructed during the period of 1930–1960. The study presented in this paper discusses the experience and per-formance of these bridge systems in the US. The analysis is based on a review of the relevant literature and databases complemented with field inspections conducted within various research projects. Along with this review, a historical overview of the codes and guidelines available for the design of TCC bridges in the US is also included. The analysis undertaken showed that TCC bridges are an effective and durable design alternative for highway bridges once they have shown a high performance level, in some situations after more than 80 years in service with a low maintenance level.
This article presents a test method that was developed to screen adhesive formulations for finger-jointed lumber. The goal was to develop a small-scale test that could be used to predict whether an adhesive would pass a full-scale ASTM E119 wall assembly test. The method involved loading a 38-mm square finger-jointed sample in a four-point bending test inside of an oven with a target sample temperature of 204°C. The deformation (creep) was examined as a function of time. It was found that samples fingerjointed with melamine formaldehyde and phenol resorcinol formaldehyde adhesives had the same creep behavior as solid wood. One-component polyurethane and polyvinyl acetate adhesives could not maintain the load at the target temperature measured middepth of the sample, and several different types of creep behavior were observed before failure. This method showed that the creep performance of the onecomponent adhesives may be quite different than the performance from short-term load deformation curves collected at high temperatures. The importance of creep performance of adhesives in the fire resistance of engineered wood is discussed.
Ease of construction and favorable overall costs relative to other construction types are making high-rise (i.e., 4- and 5-story) wood frame construction increasingly popular. With these buildings increasing in height, there is a greater impetus on designers to address frame and finishes movement in such construction. As we all know, buildings are dynamic creatures experiencing a variety of movements during construction and over their service life. In wood frame construction, it is important to consider not only absolute movement but also differential movement between dissimilar materials.
This article focuses on differential movement issues and how to recognize their potential and avoid problems by effective detailing.
In wood-frame buildings of three or more stories, cumulative shrinkage can be significant and have an impact on the function and performance of finishes, openings, mechanical/electrical/plumbing (MEP) systems, and structural connections. However, as more designers look to wood-frame construction to improve the cost and sustainability of their mid-rise projects, many have learned that accommodating wood shrinkage is actually very straightforward. This publication will describe procedures for estimating wood shrinkage and provide detailing options that minimize its effects on building performance.
In this paper a precise model is established for deflection prediction of mechanically jointed beams with partial composite action. High accuracy of the proposed method is demonstrated through comparison with a comprehensive finite element (FE) modelling for a timber-concrete partial composite beam. Next, the obtained numerical results are compared with gamma-method, a well-known simplified solution for timber engineers according to the Eurocode 5. Validity and accuracy level of the gamma-method are investigated for various boundary conditions as well as different values of beam length-to-depth ratio, and discussed in details.
Strength parameters for fasteners determined in accordance with the methods prescribed for the European CE-marking leads to quite different values for seemingly similar products from different manufactures. The results are hardly repeatable, to some extent due to difficulties in selecting representative timber samples for the testing. Beside this uncertainty, the declared values available to the designer concerns only structural timber, so no strength parameters are available for common engineered wood products such as LVL or plywood
AcoustiTECH is a North American leader in acoustic solitions and has quickly become the reference standard in the industry. For 25 years, AcoustiTECH has teamed uo with Architects, builders, general contractors, acoustic consultants and other stakeholders to help them achieve their vision by providing proven acoustical solutions and expertise. AcoustiTECH looks at the specific requirements of each individual project, evaluates the requirements, determines the needs and provides personalized solutions. AcoustiTECH's approach is unique, efficient and reliable. We possess our own acoustic laboratory that we use for our research and development in order to recommend the best acoustic solutions by type of structure. Thousands of tests have been performed inclusing over 300 on heavy timber assemblies.
The principal objective of creating this document is for the professionals to compare and choose from 25 assemblies the ones that suit their needs the best. The most interesting and popular assemblies have been selected and compared side by side in the same environment, built and tested by the same professional unisg the same flooring materials.
It is important to note that the quality of construction can affect the performance. Indeed, construction standards and assemblies recommendations must be followed in order to reach the seeking performance.
The growing diffusion of cross-laminated timber structures (CLT) has been accompanied by extensive research on the peculiar characteristics of this construction system, mainly concerning its economic and environmental benefits, lifecycle, structural design, resistance to seismic actions, fire protection, and energy efficiency. Nevertheless, some aspects have not yet been fully analysed. These include both the knowledge of noise protection that CLT systems are able to offer in relation to the possible applications and combinations of building elements, and the definition of calculation methods necessary to support the acoustic design. This review focuses on the main acoustic features of CLT systems and investigate on the results of the most relevant research aimed to provide key information on the application of acoustic modelling in CLT buildings. The vibro-acoustic behaviour of the basic component of this system and their interaction through the joints has been addressed, as well as the possible ways to manage acoustic information for calculation accuracy improvement by calibration with data from on-site measurements during the construction phase. This study further suggests the opportunity to improve measurement standards with specific reference curves for the bare CLT building elements, in order to compare different acoustic linings and assemblies on the same base. In addition, this study allows to identify some topics in the literature that are not yet fully clarified, providing some insights on possible future developments in research and for the optimization of these products.
Acoustic emission (AE) characteristics of full-hole bolt-bearing testing on structural compositelumbers (SCL) including laminated veneer lumber (LVL) and oriented strand lumber (OSL) were investigated. The main conclusion is that AE cumulative counts vs time curves of the tested SCL in this study can be characterized with three distinct regions in terms of AE count rates: Region I with a lower constant count rate, Region II with varied and increased count rates, and Region III with a higher constant count rate. Differences in AE count rates of these three regions occurred between LVL and OSL. Also, within each tested SCL, differences in AE count rates were observed among the three regions. These differences in terms of AE count rates between two tested SCL indicate that different types of wood-based composites might have different AE characteristics in terms of the count rate changes when they are subjected to increased bolt compression load. In other words, these differences in AE characteristics between the two tested materials suggest AE “signatures” do exist for SCL bolt connections.